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1 Introduction

Stochastic Gradient descent is at the heart of most optimization algorithms these days. The most
common application is the training of Deep Neural Networks. Stochastic gradient descent was
introduced as an improvement over the traditional gradient descent approach, because it is very cheap
as it needs to take gradient with respect to just one data point in one iteration. We look at it in more
detail in Sec.3. Stochastic gradient descent has slow convergence asymptotically due to the inherent
variance [DBL14]. In this paper we look at imporvements over SGD, namely SAG[SLB17] and
SVRG[JZ13], which try to reduce this variance of SGD. We first develop the problem and some
background in Sec.2. In Sec.3, we look into Gradient descent and Stochastic Gradient Descent. In
Sec.4, we look at the SAG algorithm and in Sec.5 at the SVRG algorithm, along with its convergence
analysis.

2 Background

2.1 Problem Formulation: Supervised Machine Learning

Parametric supervised machine learning problem can be seen as the following empirical risk mini-
mization problem:
Data: n training examples (xi, yi), i = 1, ...., N
Prediction function: h(x, θ) parameterised by θ ∈ Rd
Empirical regularized risk minimization:

min
θ∈Rd

1

n

n∑
i=1

{L(yi, h(xi, θ)) + λΩ(θ)} =
1

n

n∑
i=1

fi(θ) = g(θ) (1)

Optimization: Finding θ that minimizes the empirical regularized risk.

2.2 Definitions: Smoothness and strong convexity

Definition 1. Lipschitz smooth:
A function f : Rd → R is Lipschitz smooth if its derivatives are Lipschitz continous with constant L
:

|| 5 f(y)−5f(x)|| ≤ L||y − x||∀x, y ∈ Rd (2)

A function f : Rd → R is L-smooth iff it is twice differentiable and

52 f(x) � LI∀x ∈ Rd (3)

Definition 2. µ-strongly convex:
A convex function f(x) is µ-strongly convex if there exists a µ > 0 s.t ∀α ∈ [0, 1], it holds that:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− 1

2
α(1− α)µ||x− y||2 (4)

When f(x) is differentiable, this is equivalent to:

f(y) ≥ f(x)+ < 5f(x), y − x > +
µ

2
||y − x||2 (5)



A twice differentiable function f : Rd → R is µ-strongly convex iff

52 f(x) � µI∀x ∈ Rd (6)

Condition number is defined as κ = L
µ ≥ 1

2.3 Convexity in Finite Sum Problems: Supervised Machine Learning

The un-regularized optimization problem is:

min
θ
g(θ) =

1

n

n∑
i=1

fi(θ) =
1

n

N∑
i=1

{L(yi, h(xi, θ))} (7)

The above problem in Eq.7 is convex (Case 1) when:

1. each fi(θ) is convex:
Convex loss and linear predictions h(x, θ) = θTΦ(x)

2. each fi(θ) is L-smooth:
Smooth loss and smooth prediction function h(xi, θ)

It is strongly convex (Case 2) if along with the above conditions, this additional condition is also
satisfied:

1. g(θ) is strongly convex:
Strongly convex loss and linear predictions h(x, θ) = θTΦ(x)

3 Gradient descent and stochastic gradient descent

3.1 Gradient descent

Assuming that Case 1 conditions hold:

θt = θt−1 − γt 5 g(θt−1) = θt−1 − γt
n

N∑
i=1

5fi(θt−1) (8)

The convergence rate is O(1/t) for Case 1, i.e convex functions. And the convergence rate is
O(e−t/κ) linear for Case 2, i.e strongly-convex, and the problem complexity is O(nd ∗ κ log 1/ε)
[BS17]. We just use the results for convergence for gradient descent and stochastic gradient descent
in this paper, and do not look into thier convergence analysis as the main focus of this paper is the
variance reduction method.

3.2 Stochastic Gradient descent

At every iteration t = 1, 2, 3...., a random it is drawn from i = {1, ...., n}:

θt = θt−1 − γt 5 fit(θ
t−1) (9)

For Case 2, the convergence rate in O(κ/t). And the problem complexity is independent of n [BS17].
The more general version of SGD can be written as:

θt = θt−1 − γtg(θt−1, ξt) (10)

here ξt is a random variable, which might depend on θt−1, such that the expectation
E[g(θt−1, ξt)|θt−1] = 5g(θt−1). This randomness introduces large variance. And a large
g(θt−1, ξt) can slow down the convergence. In Sec5 we look at a way to get rid of this problem, i.e
variance reduction.
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3.3 Difference between stochastic and deterministic gradient descent methods.
• In every iteration Gradient descent requires evaluation of N derivatives, which is expensive.

SGD overcomes this problem as only single gradient computation is needed in every
iteration.

• Complexity (number of iterations or running time) for Gradient descent is linear in n :
O(d ∗ nκ ∗ log 1/ε), whereas for SGD it is independent of n.

• The convergence rate is linear or exponential for GD: O(e−t/κ), whereas for SGD it is
O(κ/t).

• The difference is also illustrated in Fig:3.3. We can see that GD converged in lesser number
of iterations, but GD requires much more computation in each iteration(evaluation of N
derivatives). This motivates the SAG algorithm in Sec.4.

3.4 Limitations of SGD

Stochastic gradient descent has large variance because of the randomness in the algorithm. It has
slow convergence asymptotically due to this inherent variance.

4 SAG: Stochastic average gradient [SLB17]

At every iteration t = 1, 2, 3...., a random it is drawn from i = {1, ...., n}:

θt = θt−1 − γ

n

n∑
i=1

dti (11a)

where

dti =

{
5fi(θt−1) if i = it
dt−1i otherwise (11b)

This requires to store the gradients of all the functions fi, i = {1, ...., n}, which takes extra memory,
gradient ∈ Rd.

For Case 2, SAG also has linear or exponential convergence rate. And the complexity is O(d ∗
(κ+ n) ∗ log 1/ε) [SLB17], thus complexity is linear in d.

Thus it is able to overcome the limitation of SGD of slow convergence, but needs extra storage
space.

SAGA [DBL14] The update equation for SAGA (an improvement over SAG) in the variance
reduction form can be written as:

θt = θt−1 − γ[
1

n

N∑
i=1

yt−1it
+ (5fit(θt−1)− yt−1it

)] (12)

5 SVRG: Stochastic Variance Reduced Gradient Descent[JZ13]

5.1 Variance reduction

Variance reduction is a technique which is used to reduce the variance of a random variable X by
using another random variable Y, which is positively correlated with X. A new variable Zα is defined

3



as:
Zα = α(X − Y ) + E[Y ] (13)

It can be seen that expectation of Zα is E[Zα] = αE[X] + (1 − α)E[Y ]. And its variance is
var(Zα) = α2(var(X) + var(Y )− 2cov(X,Y ))

5.2 SVRG Procedure

The update equation for θt is:

θt = θt−1 − γ[5g(θ̃) + (5fit(θt−1)−5fit(θ̃))] (14)

and θ̃ is updated after every m iterations of Eq. 14

A well formulated algorithm is as follows:

Initialize θ̃ ∈ Rd;
for T epochs do

Compute5g(θ̃) = 1
n

∑n
i=15fi(θ̃);

Initialize θ0 = θ̃;
for t = 1 to m do

θt = θt−1 − γ[5g(θ̃) + (5fit(θt−1)−5fit(θ̃))];
end
Update θ̃ = θm;

end
Output: θ̃

Algorithm 1: SVRG

5.3 SVRG as variance reduction

SVRG is a form of variance reduction which is discussed in Sec.5.1. The gradient in Eq.14 can be seen
as a form of variance reduction. It can be obtained by substituting X = 5fit(θt−1), Y = 5fit(θ̃),
α = 1 in Eq.13.

5.4 Convergence of SVRG

Therorem: Assume all fi are convex and smooth, and g(θ) is strongly convex with γ > 0. Let us
assume that θ∗ = argminθg(θ). The convergence in expectation for SVRG is:

E[g(θ̃s)] ≤ E[g(θ∗)] + αsE[g(θ̃0)− g(θ∗)] (15)

Proof: For any i, consider

pi(θ) = fi(θ)− fi(θ∗)−5fi(θ∗)T (θ − θ∗) (16)

where pi(θ∗) = min(pi(θ)), because5pi(θ∗) = 0, this gives:

0 = pi(θ
∗)

≤ minη[pi(θ − η5 pi(θ)]

≤ minη[pi(θ)− η|| 5 pi(θ)||22 + 0.5Lη2|| 5 pi(θ)||22]

= pi(θ)−
1

2L
|| 5 pi(θ)||22

that is:

|| 5 fi(θ)−5fi(θ∗)||22 ≤ 2L[fi(θ)− fi(θ∗)−5fi(θ∗)T (θ − θ∗)]

Summing the above inequality over i = 1, ..., n., and using5g(θ∗) = 0:

1

n

n∑
i=1

|| 5 fi(θ)−5fi(θ∗)||22 ≤ 2L[g(θ)− g(θ∗)] (17)
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We will use this result.

Let vt = 5fit(θt−1)−5fit(θ̃) + µ̃. Conditioning on θt−1, we will take expectation of vt wrt it:

E||vt||22 ≤ 2E|| 5 fit(θ
t−1)−5fit(θ∗)||22 + 2E||[5fit(θ̃)−5fit(θ∗)]−5g(θ̃)||22

using ||a+ b||22 ≤ 2||a||22 + 2||b||22 and µ̃ = 5g(θ̃)

= 2E|| 5 fit(θ
t−1)−5fit(θ∗)||22 + 2E||[5fit(θ̃)−5fit(θ∗)]− E[5fit(θ̃)−5fit(θ∗)]||22

≤ 2E|| 5 fit(θ
t−1)−5fit(θ∗)||22 + 2E|| 5 fit(θ̃)−5fit(θ∗)||22

using E||ξ − Eξ||22 = E||ξ||22 − ||Eξ||22 ≤ E||ξ||22 for any random vector ξ

≤ 4L[g(θt−1)− g(θ∗) + g(θ̃) + g(θ∗)] using Eq.17

We conditioned on wt−1, we get Evt = 5g(θt−1), which gives:

E||θt − θ∗||22 = ||θt−1 − θ∗||22 − 2η(θt−1 − θ∗)TEvt + η2E||vt||22
≤ ||θt−1 − θ∗||22 − 2η(θt−1 − θ∗)T 5 g(θt−1) + η24L[g(θt−1)− g(θ∗) + g(θ̃) + g(θ∗)]

using result of previous inequality

≤ ||θt−1 − θ∗||22 − 2η[g(θt−1)− g(θ∗)] + 4η2L[g(θt−1)− g(θ∗) + g(θ̃) + g(θ∗)]
using convexity of g(θ)

= ||θt−1 − θ∗||22 − 2η(1− 2Lη)[g(θt−1)− g(θ∗)] + 4η2L[g(θ̃) + g(θ∗)]

Let us consider a particular state s, s.t w̃ = w̃s−1. w̃s is selected after all the inner updates hace been
completed. Summing the previous inequality for t = 1, ...,m,, i.e over all iterations of the inner loop
in the algorithm:

E||θm − θ∗||22 + 2η(1− 2Lη)mE[g(θ̃s)− g(θ∗)] ≤ E||θ0 − θ∗||22 + 4Lmη2E[g(θ̃)− g(θ∗)]

= E||θ̃ − θ∗||22 + 4Lmη2E[g(θ̃)− g(θ∗)]

≤ 2

γ
E[g(θ̃)− g(θ∗)] + 4Lmη2E[g(θ̃)− g(θ∗)]

using strong convexity Sec.2.2

= 2(γ−1 + 2Lmη2)E[g(θ̃0)− g(θ∗)]

This gives:

E[g(θ̃s)− g(θ∗)] ≤
[ 1

γη(1− 2Lη)m
+

2Lη

1− 2Lη

]
E[g( ˜θs−1)− g(θ∗)] (18)

Which implies E[g(θ̃s)− g(θ∗)] ≤ αsE[g(θ̃0)− g(θ∗)].

Hence proved.

5.5 SVRG overcomes the limitations of SGD and SAG

• SVRG does not need to store gradients, unlike SAG.
• It has linear convergence rate, same as SAG.
• Unlike SAG, it is more easily applicable to complex problems.
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